Riding technique

From Onewheel.Wiki
Jump to: navigation, search

Safe Riding Technique (aka: How to Avoid a Nosedive at Speed): (By: Onedemonium)

First, while the OW may seem very similar to other boardsports, and some basic mechanics are similar, it's not entirely the same. Unlike a snowboard, surfboard, or skateboard, the OW balances over a central point in the middle of the board: the wheel's axle. Turns take place on the edges of the tire, not the edges of the board. Onewheel also has a motor and a computer controller, and therefore a rider needs to take the time to learn how the motor and software react to many different situations, similar to learning to drive a car or motorcycle. Regardless of a person's prior experience with other boardsports, they need to approach the OW like they are taking up an entirely new sport from scratch. Making too many assumptions about how the OW works often leads to disaster.

The most successful technique for avoiding nosedives at high speeds (or any speed) is to keep the knees bent and shift rider weight (center of gravity) so that it is maintained directly over the wheel. It's essential to keep the knees bent both to absorb bumps and shock, but also to modulate how the rider shifts pressure from nose to tail to accelerate and brake. Rather than leaning forward with the entire body and keeping locked knees to accelerate or maintain speed against motor pushback, imagine using the muscles of both legs and changes in the bend of the forward and rear knees to apply the necessary pressure to the nose. If you want to ride fast and accelerate/decelerate safely, it's about pressing and releasing with the legs, ROCKING the board back and forth over the fulcrum of the wheel's axle to accelerate and decelerate, not leaning with the entire body forwards and backwards.


Exercise 1 (Good Riding Technique):

Here's an exercise using an unpowered Onewheel to help understand the above concept. The exercise will be difficult at first, but it's also meant to emphasize the energy and skill required to keep the Onewheel balanced while operating at speeds beyond pushback (This may be extremely difficult for those who do not already possess good balancing skills, and it will be much easier performed on deep carpet or grass). You can find a video demonstration for this exercise in the first half of this video:


  1. While powered off, place the Onewheel next to an object or the corner of a wall so that you can stand on the Onewheel and comfortably grasp the corner of the wall or object with one hand at about shoulder height. The Onewheel should be close enough to the wall or object so that you do not have to lean the torso forward to grasp the wall or object (this is so that you can keep your torso upright during the exercise).
  2. Keeping the Onewheel powered off, stand on it facing the wall and use your rear hand (the one over the tail) to steady yourself.
  3. Carefully bring the board to level and use as light a touch as possible with your rear hand on the wall to maintain balance (it's alright to use as much assistance as you need with your hand, but try to use the minimum amount and teach your legs to do the work).
  4. If you're not already, bend your knees slightly while maintaining a level balance, and keep your upper torso upright (do not bend forward at the waist or lean side to side). With a very light touch on the wall and maintaining balance, this position should have your bodyweight centered over the Onewheel's axle.
  5. To rock forward onto the nose of the Onewheel, keep your body upright and press forward, extending your front leg while bending the rear knee. Your front leg should now be extended with a slight bend in the knee and your rear leg raised with a dramatic bend in the knee. Focus on not leaning forward, but keeping the centerline of the torso over the wheel. Try to make the transition onto the nose smooth and with control. Be careful, the transition may be fast on the first few attempts.
  6. To rock the Onewheel the other direction back onto the tail, keep the torso upright and push down with your rear leg, extending the rear knee while lifting your front leg and bending the front knee. Again, use control to make the transition as smooth as possible.
  7. Throughout the transition notice that the centerline of upper body and center of mass remains centered over the wheel. You are using the axle as a pivot point and the legs to transfer pressure from nose to tail. The body's weight remains centered above the wheel.
  8. Bring the board back to level by pressing with and extending the front leg while lifting the rear leg and bending the rear knee until you find equilibrium, both legs should be applying equal pressure and both knees equally bent. Keep it smooth.
  9. Rock the board back and force using this method and try to pause the board at level through the transition. Use as much force as needed with your hand on the wall to assist you in balancing and to prevent you from leaning forward. Feel the rhythm as you rock back and forth with the front and rear legs alternately extending and contracting.
  10. If you practice this exercise enough, you will find yourself gaining the balance and leg strength necessary not only to keep the board balanced at level for long periods, but also with the nose tilted at various degrees forward and backward.


Exercise 2 (Poor Riding Technique):

To demonstrate the consequences of poor riding technique try this exercise (It will be most safely performed on deep carpet or grass). You can find a video demonstration for this exercise in the second half of this video: https://youtu.be/bTTYwHZgX1I:

  1. While powered off, place the Onewheel next to an object or the corner of a wall so that you can stand on the Onewheel and comfortably grasp the corner of the wall or object with one hand at about shoulder height. The Onewheel should be close enough to the wall or object so that you do not have to lean the torso forward to grasp the wall or object (this is so that you can keep your torso upright during the exercise).
  2. Keeping the Onewheel powered off, stand on it facing the wall and use your rear hand (the one over the tail) to steady yourself.
  3. Carefully bring the board to level and use as light a touch as possible with your rear hand on the wall to maintain balance (it's alright to use as much assistance as you need with your hand, but try to use the minimum amount and let your legs to do the work).
  4. To rock the board forward onto the nose, keep your forward leg/knee straight and lean over the nose with your body (your rear leg/knee will likely naturally raise and bend a little). You may need to exert quite a bit of pressure on the wall to keep from falling forward off the board. Be careful, the transition will be fast.
  5. Notice that, in this position, the center of the body's weight is forward of the wheel and weight is entirely on the front foot. You will need to bend sideways at the hips to try to keep the torso upright.
  6. Without using assistance from the wall, attempt to rock the board back onto the tail. You will find it impossible without exerting sudden pressure on the nose to throw your bodyweight back over the pivot point of the Onewheel's axle.
  7. Now, imagine you are using this technique for riding with the Onewheel powered on and receiving balancing assistance from the board. Once you lean forward to accelerate more quickly than the motor can compensate for, the board immediately snaps forward, and there is no room for recovery. If you are riding beyond pushback and leaning forward to accelerate or maintain speed any small bump or even a repositioning of the body or foot can suddenly overwhelm the motor, and, since the body's center of mass if forward of the wheel, it will immediately snap forward into a nosedive without an way to recover. At low speeds with the full resources of the motor's torque to help balance it may not be a problem, but once you pass the motor's breaking point, it becomes an immediate and unrecoverable nosedive.


Pushback: Why It's a Friend, Not an Enemy, and How to Avoid a Nosedive (By: Onedemonium)

Riders new to the Onewheel will often read about pushback in the manual or see it discussed in OW groups or forums without explanation, or worse, an inaccurate explanation. Here is an attempt at keeping the record straight.

Velocity Pushback:

There are three basic types of pushback a rider will experience on the OW. The first is usually pushback that is typically associated with velocity. This form of pushback will typically present itself as the nose of the board rising to various degrees when a certain velocity is reached depending on the chosen riding mode. On the original OW, the modes are "Classic", "Extreme", and "Elevated." On the Onewheel+, the modes are "Sequoia", "Cruz", "Mission", and "Delirium". It is important to note that while pushback in the various modes is typically associated solely with velocity, that is not an entirely correct association. The point at which pushback occurs is a function of how hard the motor and battery are working to both help the rider balance, accelerate, and/or maintain speed. This means that the point at which pushback occurs will vary depending not only on velocity but rider weight, tire pressure, incline/decline, wind direction, rider stance, battery level, etc.. This is why it is common for lighter riders to report pushback occurring at higher speeds than heavier riders. Riders will also experience pushback at different velocities if they are climbing versus descending, riding into the wind rather than with the wind, at different tire pressures, etc...

Why Pushback at All, and Velocity Nosedives:

So, why is pushback not simply a function of velocity alone? The reason is that pushback was developed as a tactile signal to the rider as to when the Onewheel is approaching the limits of its ability to both maintain speed and assist the rider in balancing front to back. It's extremely important to understand that the motor and battery have mechanical limits to the work they can do. At low speeds the motor is able to devote a large amount of resources in torque to helping the rider balance, but as the motor spins faster its resources become more and more dedicated to maintaining speed and/or accelerating, and that means fewer resources are available to help the rider balance. Once the motor's resources reach a breaking point, the ability to help the rider balance disappears. If the rider cannot maintain balance themselves past this breaking point on even a slight bump or dip in the road, they will undoubtedly experience an unexpected nosedive. This will often feel to the rider as though the motor has suddenly cut-out or shut down. This is not generally the case in 99% of circumstances. Had the rider recovered from the nosedive they would immediately find that the motor is still functioning, and if they applied pressure to the tail, the motor would decelerate and the board would respond normally.

It is essential for safety to remember that, at high speeds, the rider becomes almost solely responsible for maintaining front to back balance. It is easy to forget at low speeds how much assistance the motor is providing the rider in maintaining balance, therefore it is important that riders actively develop personal balance skills as well as a feel for the motor’s capabilities prior to attempting to ride at speeds beyond pushback. One method of practicing the balancing skill necessary to ride at high speeds is to work on balance skills with a balance board such as the Indo or Revolution Balance Boards or even to practice balancing on the Onewheel while powered off. Those lacking the skill to maintain more than momentary balance on the OW while powered off are potentially at serious risk of nosedives while riding at speeds beyond initial pushback. Riding at speeds beyond pushback becomes increasingly like riding on a balance board the higher the speed. Imagine riding a balance board at 20mph; it's not something most people would attempt if they knew that's what they were doing.

Some people wonder why pushback in the various modes starts prior to the mode's top speed (e.g. in Mission mode pushback starts at roughly 16mph for a 200lb rider, when top speed in Mission is 19mph). Why doesn't pushback start at the mode's top speed? It doesn't start at the top speed because pushback functions as a warning that the rider is approaching top speed. That extra 2-3mph after pushback to top speed can be achieved in an instant. Imagine how fast the OW can accelerate from 0 to 3mph; it feels nearly instantaneous. So, if pushback happened at the mode's top speed, the rider would most likely go far beyond top speed prior to realizing it, and possibly put themselves at greater risk for a potential nosedive than they may have intended.

Acceleration Nosedives:

There is a very common special case nosedive prior to pushback that may result from attempting to accelerate too quickly. If the rider attempts to accelerate quickly by placing a lot of weight or pressure on the nose, the motor cannot support the weight and the nose will suddenly drop. This can happen at any speed, even from a dead stop. This will feel to the rider as though the motor has suddenly cut-out or shut off, but that is not the case. If the rider recovers from the nosedive with a successful nose-slide they will find the motor and board operating normally. To avoid acceleration nosedives the rider must exercise caution when accelerating, and through experience gain a feel for how quickly the motor is capable of accelerating without being forced into a nosedive. As with riding at high speeds, keeping the knees bent and using force from the forward leg muscles to press on the nose rather than leaning forward with one’s bodyweight to accelerate will help prevent an acceleration nosedive, and also leave the rider in a better position to recover should one occur.

Tail-slides:

The reverse of a nosedive, a tail-slide, is also possible. If the rider suddenly shifts their weight onto the tail of the board, the motor can be overwhelmed and the tail will suddenly drop and slide on the ground. Typically, tail-slides are not as critical as nosedives and far easier for the rider to recover. The motor is also quick to recover from a tail-slide because it is already being signaled to slow itself and quickly regains its ability to assist the rider in regaining balance as it slows.

Pushback and Nosedives while Ascending/Descending:

There are also two circumstances where the rider may not experience pushback as dramatically as normal, or at all. These circumstances are while ascending and descending hills. While ascending hills riders are already pressing against the nose and the grade of the hill to ascend, and therefore may not discern pushback as pushback, but as natural resistance from the incline. This can result in a sudden nosedive prior to feeling pushback while climbing. While descending a rider may not feel pushback because their weight is likely to already be on the tail to control speed down a hill. In this case, beyond critical speeds the OW may no longer be able to assist the rider in balancing and the tail may suddenly drop resulting in a momentary tail-slide/drag.

Battery Pushback:

The second most common type of pushback a rider will experience is battery pushback. In the case of battery pushback the OW senses when the battery is nearing depletion and signals the rider by elevating the nose dramatically. As the rider continues to press forward, the nose will continue to elevate further. If pressed hard enough, the rider will experience the board seeming to accelerate while the tail drags on the ground. When the Onewheel senses the batteries are about to be damaged by over-depletion, the board will shut off entirely. This is one of only two cases in which the board is designed to simply shut off immediately. It's essential that the rider not ignore battery pushback as the companion apps do not always reflect correct low battery status and sudden shut down of the motor will inevitably lead to a nosedive.

Regeneration Pushback:

The third type of pushback a rider may encounter is regeneration pushback. The board is designed to regenerate power and store it in the batteries while descending. If the batteries are already at capacity while regeneration is happening it could cause damage. Therefore, prior to regeneration damage to the battery occurring the board will shut down. Onewheel will attempt to signal the rider with pushback prior to regeneration shutdown. Unfortunately, when descending, riders will often already have their weight on the tail elevating the nose to slow themselves and the pushback from the board may not be noticed. As a result, it’s extremely important for riders to be aware of current battery level while descending because they may not feel the pushback warning prior to the board shutting down. The board shutting down while descending will generally result in an uncontrollable, accelerating tail-slide as the wheel turns freely without any resistance from the motor. Always be aware of your batteries’ charge level prior to descending even slight declines! If they are above 90-95%, proceed with caution. It is possible to burn off excess battery by climbing the hill making s-curves, and afterward descend in a straight line as climbing in that fashion will burn battery faster than it is regenerated in a straight line over the shorter distance.


Pushback in the Riding Modes (By: Onedemonium)

Both the Onewheel and Onewheel Plus offer different riding modes to choose from. While the differences in ride characteristics are endlessly debatable, the primary function of the different modes is to help the rider limit top speed. However, it's important to remember that, regardless of the mode, it is still possible to exceed the top speed of the mode that is chosen. In each mode the Onewheel will attempt to warn the rider that they are approaching the top speed in the chosen mode with tactile pushback by elevating the nose.

Original Onewheel Modes

Classic - Max Velocity 12mph:

Pushback in Classic mode generally begins between 8-10mph depending on rider weight, tire pressure, grade, battery level, etc. The pushback is pronounced and unrelenting as it is trying to prevent the rider from exceeding the 12mph speed limit of Classic mode. Riders who are unfamiliar with pushback and lacking balance skills may start to experience what feel like speed wobbles relatively quickly in Classic mode. If the rider wishes to ride faster than the 12mph Classic limit, then they should switch to Extreme or Elevated modes.

Extreme - Max Velocity 15mph:

Pushback in Extreme mode generally begins between 12-13mph depending on rider weight, tire pressure, grade, battery level, etc. The pushback is less pronounced than in Classic mode and will allow the rider to press beyond the 15mph speed limit, and then will somewhat lessen allowing the rider to attain speeds beyond 25mph. It's important to remember that beyond the 15mph speed limit the rider becomes more and more responsible for maintaining their own balance as velocity increases, therefore, rider balance skills are essential to avoid sudden nosedives at speeds beyond the onset of pushback.

Elevated - Max Velocity 15mph:

Pushback in Elevated mode generally begins between 12-13mph depending on rider weight, tire pressure, grade, battery level, etc. The pushback is less pronounced than in Classic mode and will allow the rider to press beyond the 15mph speed limit. However, the pushback in Elevated mode when combined with the already elevated nose can result in the tail dragging when traveling on flat ground at higher speeds. In this situation it can feel impossible to slow down as the tail is already dragging and no longer allows the rider to shift weight further backward to brake normally; the rider must carefully remove pressure from the nose and allow the board to slow naturally; as the board slows, pushback will lessen and the board will level. Also important to note is that, because the nose is already elevated in Elevated mode to assist in climbing steep grades, riders may not feel the pushback at all when climbing, so it is important that they already possess the ability to correctly assess their velocity. It's also important to remember that beyond the 15mph speed limit the rider becomes more and more responsible for maintaining their own balance as their velocity increases, therefore, rider balance skills are essential to avoid sudden nosedives at speeds beyond the onset of pushback.


Onewheel+ Modes

Sequoia - Max Velocity 12mph:

Pushback in Sequoia mode generally begins between 8-10mph depending on rider weight, tire pressure, grade, battery level, etc. The pushback is pronounced and unrelenting as it attempts to prevent the rider from exceeding the 12mph speed limit of Sequoia mode. Riders who are unfamiliar with pushback and lacking balance skills may start to experience what feel like speed wobbles, or worse, the tail continuing to drop while they accelerate. The simultaneous acceleration and tail drop are most likely due to an inexperienced rider's natural instinct to fight against the dramatic pushback and level the board by pressing on the nose. The rider fighting the elevated nose causes the board to pushback harder to prevent the rider from going beyond the mode's maximum speed. This results in a feedback loop of acceleration and continuing tail drop which can feel uncontrollable. The only solution is to relax, gradually reduce pressure on the nose and shift weight to the tail; the board will then start to level and slow, but it takes time and room to ride it out. It's important to realize that, due to the powerful OW+ motor, sudden accelerations off the back of bumps or from shifts in rider weight can quickly accelerate the board into this dramatic pushback at the lowered speeds of Sequoia mode. Therefore, it's essential that if the rider wishes to ride faster than or near the 12mph Sequoia limit, they should switch to Cruz or Mission mode.

Cruz - Max Velocity 15mph:

Pushback in Cruz mode generally begins between 12-13mph depending on rider weight, tire pressure, grade, battery level, etc. The pushback is pronounced and unrelenting as it attempts to prevent the rider from exceeding the 15mph speed limit of Cruz mode. Riders who are unfamiliar with pushback and lacking balance skills may start to experience what feel like speed wobbles, or worse, the tail continuing to drop while they accelerate. The simultaneous acceleration and tail drop are most likely due to an inexperienced rider's natural instinct to fight against the dramatic pushback and level the board by pressing on the nose. The rider fighting the elevated nose causes the board to pushback harder to prevent the rider from going beyond the mode's maximum speed. This results in a feedback loop of acceleration and continuing tail drop which can feel uncontrollable. The only solution is to relax, gradually reduce pressure on the nose and shift weight to the tail; the board will then start to level and slow, but it takes time and room to ride it out. It's important to realize that, due to the powerful OW+ motor, sudden accelerations off the back of bumps or from shifts in rider weight can quickly accelerate the board into this dramatic pushback at the lowered speeds of Cruz mode. Therefore, it's essential that if the rider wishes to ride faster than or near the 15mph Cruz limit, then they should switch to Mission mode.

Mission - Max Velocity 19mph:

Pushback in Mission mode generally begins between 15-17mph depending on rider weight, tire pressure, grade, battery level, etc. The pushback is less pronounced than in Sequoia and Cruz modes and will allow the rider to press beyond the 15mph speed limit, and then will lessen allowing the rider to attain speeds beyond 25mph. It's important to remember that beyond the 15mph speed limit the rider becomes more and more responsible for maintaining their balance as velocity increases; therefore rider balance skills are essential to avoid sudden nosedives at speeds beyond the onset of pushback.

Delirium - Max Velocity 20mph:

Delirium mode is still the big question mark. Just Released. Details coming soon.

Elevated - Max Velocity 19 mph:

Elevated mode on the Plus has just been released. Details coming soon.