Charging on-the-go

From Onewheel.Wiki
Revision as of 14:05, 18 February 2018 by Makermarc (talk | contribs) (→‎Step 3: configure the solar charge controller)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
Use at your own risk. I am not responsible if you break your Onewheel, injure yourself, someone else, or burn your house down.

Overview of options

You have to choose what’s most important to you. Every option has tradeoffs on price, weight, capacity, and safety.

Option Pros Cons
DC battery pack (e.g. solar charger)

- Lightest solution
- Most energy efficient (DC->DC)
- Lots of battery choices

- Offers the greatest control over capacity and rate of charge

- The cheapest DIY solution is the most technical. Requires soldering.
- Safety is dependent on batteries used

- May require separate charger for portable pack depending on configuration

AC battery pack (e.g. Chafon)

- Most common solution
- Safe
- Includes multiple USB ports and outlets

- Heavy (7lbs w/ battery and charger)
- You must carry charger too
- AC->DC is inefficient from energy perspective
- Expensive ($300+)
- Battery capacity readings are wildly inaccurate

Car inverter

- Lots of options on the market
- Don’t have to carry anything while riding
- Safe

- Must be at your car to charge
- Need to make sure it can handle 300W load

Onewheel specs

  • Charger output: 58V 3.5A
  • Charger capacity: 130Wh
  • Wattage required to charge: 250-300W

Commercial Solutions

DC Battery Pack

Carvepower Charger.jpg

DC Charger from Carvepower-

This charger uses a 36v 4.4ah hoverboard battery to charge the Onewheel. A solar charge controller boosts the output of the battery to the 58V 3.5A required by the Onewheel. One battery provides one charge, and the Onewheel wall charger is not necessary. A separate AC charger is provided to recharge the portable battery. The controller is attached to a mount which slides on to the battery case, making it easy to switch between multiple batteries. The total weight of the controller and one battery is 4lbs.

The battery itself is not included in the kit, but can be purchased separately. Currently the best price available is from this EBay seller-

Carvepower DC Charger instructions-

AC battery pack

The idea is to use an AC battery pack with the standard Onewheel charger.

Ac inverter.png

Tested solutions

Option Pros Cons
Chafon CF-UPS008

$290 for 2 charges (288Wh)

- Most common option in community

- Modified sine wave
- Heavy - 7lbs

$311 for 2 charges (288Wh)

- Pure sine wave

- Heavy - 7lbs

$300 for 2.5 charges (330Wh)

- Pure sine wave

- Heavy - 7lbs

Incompatible with Onewheel

  1. ExpertPower Omega 453

DIY DC battery pack

The idea is to use a solar charge controller to upconvert a portable battery’s voltage to the 58V that the Onewheel expects. The solar charge controller is typically used to charge a battery via a solar panel. However in this case, your portable battery takes place of the solar panel and your Onewheel is the battery you’re charging.

See photo from @timvp below: Charger setup.png

Make sure you protect your battery with something soft in case you wipeout while riding. I suggest packing foam.

Step 1: choose a battery and charger

Battery options Specs Pros Cons
36V 12.5Ah Lithium Scooter battery $209 for 3.5 charges (450Wh) @ 5lbs
  1. Most bang for buck in terms of cost and capacity
  2. AC charger included
  3. Safe since it's LiOn
  1. No BMS
36V 4.4ah Lithium batteries from eBay $60 for ~1 charge (158Wh)
  1. Cheap ($60)
  2. A couple folks in the community have had luck with this
  1. Lots of fakes
LiFePO4 $35 for ½ charge (42Wh?) @ 1lb
  1. Safe. This is the same kind of battery that the Onewheel uses.
  1. Less than one charge
52V Mighty Mini $230 for 2.5 charges (300Wh) @ 3.3lb
  1. Safe
  2. It should be possible to charge it with stock OW charger (to be confirmed)
  1. Unsure how to upconvert 52V to 58V as the solar charger doesn’t support 52V as input
Lithium battery from $129 for ~1 charge (158Wh) @ 2.6lbs
  1. Safe (UL certified supposedly)
  2. Can be charged with LunaCycle charger
  1. No BMS
36V LiGo $150 for <1 charge (98Wh) @ 1.3lbs
  1. Safe w/ BMS
  2. Lightweight
  3. Can be charged with LunaCycle charger
  4. Designed to be rugged
  1. Less than one charge
Lipo Bricks (RC packs)

(Good Value: MultiStar)

$140 for 3 charges (444Wh) @ 2.6lbs
  • Low cost
  • Offers fast charging of OW (0-100% under 20 min)
  • Can be recharged quickly with external charger
  • Packs are modular (Recommended configuration is two 6s packs with series connection for 12s (50V output)
  • Requires occasional balancing
  • Packs are sometimes defective (low charging speed or dead cells)
  • Hobby-grade charger is recommended for balancing, cell health monitoring, and fast charging
  • Packs require protective case for safety, should be charged in a safe location etc.

You also need a way to charge your portable battery.

Charger options Pros Cons
LunaCycle charger
  1. Cheap ($60)
  2. Safe because it auto-shuts off
  3. XT60 connector
AC → DC charger
  1. Uses off the shelf power supply
  1. Requires DC Barrel to XT60 connector
LiFePO4 charger
  1. Cheap ($30)

To be safe, buy a battery pouch and only charge when you’re near the charger and awake.

Step 2: buy the other parts

  1. Solar charge controller - $40

Charge controller.png

  1. 2x XT60 pigtails - $3 each

Xt60 pigtails.png

  1. XLR plug - $3

Xlr plug.png

Step 3: configure the solar charge controller

The output of the solar charge controller must match the output of the Onewheel charger. Your settings should look something like the photo below.

Controller config.png

The first line is for monitoring your supply battery, it is not critical if this is incorrect. Set the first line (where it says 32.5V) to the minimum voltage of your battery. 32V is generally a safe setting for a 36V-rated battery.

The critical settings are on the second and third lines (Target voltage (58V) and Amp limit). If the voltage is set incorrectly, the battery will overcharge or may not fully charge.

The stock charger supplies 3.5A. If you are using a 36V battery, you will not be able to exceed 3.5A. If your supply voltage is 50-60V, you will be able to charge the OW at a higher rate. Limited testing has been done on fast-charging, but there do not appear to be any major drawbacks (cycle life and warranty may be affected).

Remember! The battery pack should be on the solar panel label and OW on the battery label on the solar charge controller.

Never charge your batteries while they are cold!!!

The MPT-7210A manual can be found here. READ IT COMPLETELY BEFORE USING

Lipo Pack 12S running at 8A

Step 4: solder the wires to the XLR plug

The Onewheel’s XLR plug requires a different wiring than the off-the-shelf XLR plugs. Unfortunately, that means you have to do some soldering.

Below is the correct configuration. Notice the positive wire is connected to *both* pins 2 and 3 of the XLR plug. If you want to verify this yourself, you can easily open the Onewheel charger’s XLR plug.

Xlr solder.png

Step 5: hook it all up!

Portable battery → male XT60 pigtail → solar charge converter → female XT60 pigtail → male XT60 pigtail → soldered XLR plug → (wait until voltage reaches 58V before plugging in!) Onewheel

Sometimes the OW does not go into its charge mode automatically. Simply press the power button in this case.

When you’re done charging, I suggest turning off the solar charge converter first before unplugging anything. Then disconnect the battery. Then unplug from Onewheel.

Charging Onewheel to 100% is safe. You’ll see the amps ramp down on the solar charge converter display as you enter “trickle charge” mode. But you’ll want to disconnect soon or it’ll just slowly drain your battery.